success_jsonpCallback({"data":[{"_index":"cms-v1","_type":"cms_new","_id":"67c7c0c9f7ca642c2a5555ef","_score":null,"_source":{"editorid":4099,"keywords":["AI","数据治理"],"authorname":"数据驱动智能 晓晓","keywordids":[1652,10137],"it168_url":"http://tech.it168.com/a2025/0305/6879/000006879325.shtml","id":6879325,"it168_publishtime":1741144266,"abstract":"作为帮助众多组织驾驭人工智能之旅的人,我注意到一个令人担忧的趋势——大多数高管都在急于采用人工智能,却没有理解真正适应的深层含义。","avatar":"http://sy0.img.it168.com/article/5/5099/5099454.jpg","authorid":4099,"title":"人工智能采用与适应:5 个关键差异决定AI是否能支撑组织成功","editorname":"任朝阳","comment_count":0},"sort":[1741144266000]},{"_index":"cms-v1","_type":"cms_new","_id":"67c66d88f7ca645c9b540310","_score":null,"_source":{"editorid":4099,"keywords":["数据治理","AI就绪"],"authorname":"卿云 编译","keywordids":[10137,755349],"it168_url":"http://tech.it168.com/a2025/0304/6879/000006879186.shtml","id":6879186,"it168_publishtime":1741057417,"abstract":"Dremio发布的一份报告显示,越来越多的企业认识到统一数据的重要性,正在寻求跨平台整合数据的解决方案,其中 86%%的企业将在明年优先实现数据统一。","avatar":"http://sy0.img.it168.com/article/5/5098/5098677.jpg","authorid":4099,"title":"Dremio报告:86%%的企业关注数据统一,为人工智能做好准备","editorname":"任朝阳","comment_count":0},"sort":[1741057417000]},{"_index":"cms-v1","_type":"cms_new","_id":"67c6675bf7ca645ce83f9a7b","_score":null,"_source":{"editorid":4099,"keywords":["数据治理"],"authorname":"数据驱动智能 晓晓","keywordids":[10137],"it168_url":"http://tech.it168.com/a2025/0304/6879/000006879171.shtml","id":6879171,"it168_publishtime":1741055837,"abstract":"本文介绍了一个战略性的“现在-下一步-近期”框架。这不仅仅是一个路线图,也是确保数据管理之旅取得成功的关键工具,它展示了每一步清晰、可衡量的进展。","avatar":"http://sy0.img.it168.com/article/5/5098/5098611.jpg","authorid":4099,"title":"衡量数据管理价值的3阶段框架及指标","editorname":"任朝阳","comment_count":0},"sort":[1741055837000]},{"_index":"cms-v1","_type":"cms_new","_id":"67b68619f7ca647b0517f3ab","_score":null,"_source":{"editorid":4099,"keywords":["数据治理","GenAI"],"authorname":"数据驱动智能 晓晓","keywordids":[10137,697823],"it168_url":"http://tech.it168.com/a2025/0220/6877/000006877939.shtml","id":6877939,"it168_publishtime":1740015131,"abstract":"在这篇文章中,我们将探讨人工智能中的三个道德问题、数据团队如何参与其中,以及作为数据领导者今天可以做些什么来为未来提供更符合道德和更可靠的人工智能。","avatar":"http://sy0.img.it168.com/article/5/5092/5092375.jpg","authorid":4099,"title":"数据团队在构建符合道德的人工智能中会起到什么关键作用","editorname":"任朝阳","comment_count":0},"sort":[1740015131000]},{"_index":"cms-v1","_type":"cms_new","_id":"67aaaf68f7ca6460903109e4","_score":null,"_source":{"editorid":4099,"keywords":["数据治理"],"authorname":"数据驱动智能 晓晓","keywordids":[10137],"it168_url":"http://tech.it168.com/a2025/0211/6877/000006877197.shtml","id":6877197,"it168_publishtime":1739239273,"abstract":"人工智能数据治理框架提供了一种结构化的方法,以应对人工智能相关的考量,并确保人工智能系统的透明性、问责性和可解释性。该框架帮助员工和利益相关者中建立对人工智能技术的信任和信心,最终增强组织的有效性和创新能力。","avatar":"http://sy0.img.it168.com/article/5/5088/5088470.png","authorid":4099,"title":"数据治理是人工智能创新数据价值的引擎|数据治理 3.0","editorname":"任朝阳","comment_count":0},"sort":[1739239273000]},{"_index":"cms-v1","_type":"cms_new","_id":"6797541af7ca6453e447d765","_score":null,"_source":{"editorid":4099,"keywords":["数据分析","数据治理"],"authorname":"数据驱动智能 晓晓","keywordids":[3287,10137],"it168_url":"http://tech.it168.com/a2025/0127/6876/000006876738.shtml","id":6876738,"it168_publishtime":1737970716,"abstract":"人工智能如何增强数据产品生命周期、用户体验的重要性以及以较少资源专注于高级垂直行业的能力呢?在本文中,我们想专门讨论如何通过人工智能优化数据产品开发,以更快、更自然、更有效地构建和扩展数据产品。","avatar":"http://sy0.img.it168.com/article/5/5085/5085733.png","authorid":4099,"title":"2025年如何利用AI人工智能加强数据治理和应用","editorname":"任朝阳","comment_count":0},"sort":[1737970716000]},{"_index":"cms-v1","_type":"cms_new","_id":"67930566f7ca6415615032cb","_score":null,"_source":{"editorid":4003,"keywords":["数据治理"],"authorname":"李代丽","keywordids":[10137],"it168_url":"http://cloud.it168.com/a2025/0124/6876/000006876561.shtml","id":6876561,"it168_publishtime":1737688424,"abstract":"有效的数据治理是管理操作系统中使用的数据的核心,也是管理数据仓库、小型数据集市和数据湖提供的 BI 和数据科学应用程序的核心。它也是数字化转型计划的一个特别重要的组成部分,它可以帮助其他企业流程,例如风险管理、业务流程管理和并购。","avatar":"http://sy0.img.it168.com/article/5/5084/5084799.png","authorid":4003,"title":"数据治理的重要性及其在组织中的实施策略","editorname":"李代丽","comment_count":0},"sort":[1737688424000]},{"_index":"cms-v1","_type":"cms_new","_id":"6792eb14f7ca64158256a53f","_score":null,"_source":{"editorid":4003,"keywords":["数据治理"],"authorname":"李代丽","keywordids":[10137],"it168_url":"http://cloud.it168.com/a2025/0124/6876/000006876525.shtml","id":6876525,"it168_publishtime":1737681686,"abstract":"设想一下,如果是一群深耕数据开发或者是数据架构的专业人士“围炉共话”,猜猜他们会说些什么?是如何摆平复杂的数据架构?数据分布?数据流?数据模型……确实,这些都是数据治理必须要攻克的难题!","avatar":"http://sy0.img.it168.com/article/5/5084/5084680.jpg","authorid":4003,"title":"开启上帝视角,让数据治理告别“下水道工程”","editorname":"李代丽","comment_count":0},"sort":[1737681686000]},{"_index":"cms-v1","_type":"cms_new","_id":"678dbf66f7ca64253f3922c6","_score":null,"_source":{"editorid":4003,"keywords":["数据治理"],"authorname":"朱金宝","keywordids":[10137],"it168_url":"http://cloud.it168.com/a2025/0120/6876/000006876071.shtml","id":6876071,"it168_publishtime":1737342825,"abstract":"2025年,企业将迎来更加深刻的变革,数据治理人员肩负着推动企业数字化转型、确保数据质量与安全的重要使命。在这个充满挑战和机遇的时代,让我们勇敢地承担起这个时代赋予我们的责任,持续推动数据治理的深入实施,帮助企业在时代洪流中找到前行的方向。","avatar":"http://sy0.img.it168.com/article/5/5082/5082133.png","authorid":4003,"title":"数据治理2025年的趋势与展望","editorname":"李代丽","comment_count":0},"sort":[1737342825000]},{"_index":"cms-v1","_type":"cms_new","_id":"678470e2f7ca646cf831b4ed","_score":null,"_source":{"editorid":4099,"keywords":["数据治理"],"authorname":"数据驱动智能 晓晓","keywordids":[10137],"it168_url":"http://tech.it168.com/a2025/0113/6875/000006875471.shtml","id":6875471,"it168_publishtime":1736732899,"abstract":"数据治理是一种新的管理理念,是为了保障企业数据清洁可信,满足各业务部门对数据消费需求,建立体系和运作机制,指导各项数据工作正确开展。","avatar":"http://sy0.img.it168.com/article/5/5079/5079030.jpg","authorid":4099,"title":"大型集团落地式数据治理实施方案","editorname":"任朝阳","comment_count":0},"sort":[1736732899000]}],"total":539})